Welcome!

We study the connections between terrestrial biogeochemistry and the Earth’s climate. We focus on carbon cycling in wet environments spanning different human disturbance and management conditions, such as restored wetlands, pristine temperate rainforests, and emerging waste systems.

We use a mix of methods to measure, understand, and predict biogeochemical processes, combining soil science, ecosystem ecology, and Earth systems science. In the laboratory, we manipulate soil conditions to understand the microscale controls of processes like decomposition and rates of greenhouse gas emissions. In the field, we make long-term measurements of gas exchanges to quantify the unique greenhouse gas signatures of wet ecosystems and how they respond to land-use and global change. At regional to global scales, we use data science and machine learning to synthesize big data from global scientific and sustainable development networks.

Current collaborators include eddy covariance flux scientists from AmeriFlux (FLUXNET-CH4), an NSF-funded coastal rainforest margin’s research coordination network (CRMRCN), and SOIL, a research and development non-governmental organization providing sanitation services in Haiti.